Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Shi-Fan Wang,^a Jia-Yu Xue,^a Lei Shi,^a Hai-Liang Zhu^a and Seik Weng Ng^b*

^aInstitute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(\text{C}-\text{C}) = 0.005 \text{ Å}$ R factor = 0.055 wR factor = 0.139 Data-to-parameter ratio = 19.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(5,5,7,12,12,14-Hexamethyl-1,4,8,11-tetraazacyclotetradecane-1,8-diacetato)nickel(II) tetrahydrate

The Ni atom in the title compound, $[Ni(C_{20}H_{38}N_4O_4)]\cdot 4H_2O$, is chelated by four N atoms of the macrocycle and also covalently bonded to two carboxylate groups, in a *cis*-N₄O₂Ni octahedral environment. The mononuclear complex interacts with the solvent water molecules to form a three-dimensional network structure.

Received 27 June 2005 Accepted 1 July 2005 Online 6 July 2005

Comment

Several structural studies have been published to date on the metal complexes of EDTA-like tetraaza macrocycles (EDTA is ethylenediaminetetraacetic acid), the N atoms of which are each joined to an acetate $-CH_2CO_2$ group so that the four N atoms and the four carboxylate arms are able to encapsulate a large metal ion. As the first row transition metals do not usually adopt a coordination higher than six, the extra coordinating acetate arms are not utilized, and this is noted in, for example, the nickel derivative of the 12-membered C_8N_4 ring macrocycle, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid. Only two of the four carboxylic acid units are deprotonated and they bind to the metal atom, which is also coordinated by the four N atoms (Riesen *et al.*, 1986).

The 16-membered $C_{12}N_4$ ring tetraaza macrocycle, γ -*C*meso-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane (Hay *et al.*, 1975), reacts with a fivefold excess of ethyl bromoacetate to yield the expected tetraacetic acid, which has been isolated as a hydrochloride hydrate (Wang *et al.*, 2005). When the reaction is carried out with only a twofold equivalent of the acetate, 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecanium-1,8-diacetic acid is formed (see *Experimental*); this amino acid, when reacted with nickel sulfate, afforded the title compound, (I), in which four N atoms and two carboxylic acid O atoms are able to bond to the metal (scheme, Fig. 1).

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved The carboxylate groups each bind through an O atom, and the two O atoms are *cis* to each other in the octahedron surrounding the Ni atom.

The complex and solvent water molecules (Table 2) are linked to form a hydrogen-bonded network structure.

Experimental

5,5,7,12,12,14-Hexamethyl-1,4,8,11-tetraazacyclotetradecane-1,8diacetic acid was synthesized from the reaction of the 16-memberedring tetraaza macrocycle and ethyl bromoacetate in 1:2 molar quantities. 5,5,7,12,12,14-Hexamethyl-1,4,8,11-tetraazacyclotetradecane (0.28 g, 1 mmol), synthesized using the reported procedure (Hay *et al.*, 1975), and ethyl bromoacetate (0.34 g, 2.05 mmol) were refluxed in 1 *M* sodium hydroxide for 1 h. Hydrochloric acid (1 *M*) was added to give a pH of about 1. To the resulting solution was added nickel sulfate hexahydrate (0.26 g, 1 mmol) to give a purple solution. Deep-blue, almost violet, prisms of (I) formed after several days. The CHN elemental percentages (C 45.4, H8.5, N 10.6%) correspond to an empirical formulation with four water molecules.

Crystal data

$[Ni(C_{20}H_{38}N_4O_4)]\cdot 4H_2O$	$D_x = 1.384 \text{ Mg m}^{-3}$
$M_r = 529.32$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/n$	Cell parameters from 8736
a = 9.1863 (6) Å	reflections
b = 13.8653 (9) Å	$\theta = 2.4 - 28.3^{\circ}$
c = 19.987 (1) Å	$\mu = 0.81 \text{ mm}^{-1}$
$\beta = 93.604 \ (1)^{\circ}$	T = 295 (2) K
V = 2540.7 (3) Å ³	Prism, blue
Z = 4	0.21 \times 0.18 \times 0.13 mm
Data collection	
Bruker APEX area-detector	5770 independent reflections
diffractometer	5188 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.036$
Absorption correction: multi-scan	$\theta_{\rm max} = 27.5^{\circ}$
(SADABS; Bruker, 2002)	$h = -11 \rightarrow 11$
$T_{\min} = 0.713, T_{\max} = 0.902$	$k = -17 \rightarrow 18$
21339 measured reflections	$l = -25 \rightarrow 25$
Refinement	
Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0534P)^2]$

$w = 1/[\sigma^2(F_o^2) + (0.0534P)^2]$
+ 2.6926P]
where $P = (F_0^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm max} = 0.66 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.68 \text{ e } \text{\AA}^{-3}$

Table 1

Selected	geometric	parameters	(Å,	°).
----------	-----------	------------	-----	-----

N4 2.097 (2)
O1 2.108 (2)
O3 2.112 (2)
Ni1 $-$ O3 95.7 (1)
Ni1 - N4 92.5 (1)
Ni1 - O1 103.5 (1)
Ni1-O3 79.1 (1)
Ni1-O1 94.7 (1)
Ni1-O3 169.5 (1)
Ni1-O3 81.4 (1)

A plot of (I), showing the numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

Table 2

H٧	drogen-bond	geometry	(Å, '	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H2N\cdots O4^{i}$	0.86	2.43	3.160 (4)	143
$N4-H4N\cdots O4^{i}$	0.86	2.22	2.993 (3)	150
$O1W - H1W1 \cdots O1$	0.85	2.07	2.903 (4)	167
$O1W - H1W2 \cdots O4W$	0.85	2.24	2.949 (9)	142
$O2W - H2W1 \cdots O1W$	0.85	1.99	2.822 (7)	164
$O2W - H2W2 \cdot \cdot \cdot O3W^{ii}$	0.86	1.85	2.57 (1)	141
$O3W - H3W1 \cdots O4^{iii}$	0.86	2.19	2.817 (6)	129
$O3W - H3W2 \cdots O4W$	0.88	1.78	2.37 (1)	123
O4W−H4W2···O2	0.88	2.05	2.693 (8)	129

Symmetry codes: (i) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) -x + 1, -y + 1, -z + 1; (iii) x - 1, y, z.

The C- and N-bound H atoms were positioned geometrically [N– H = 0.86 Å and C–H = 0.96–0.98 Å; $U_{iso}(H) = 1.2U_{eq}(C \text{ or N})$; or $1.5U_{eq}(C)$ for methyl H atoms] and included in the refinement in the riding-model approximation. The methyl groups were rotated to fit the electron density. The water H atoms were placed at chemically sensible positions on the basis of hydrogen bonds and their positions were fixed; such a scheme had one water molecule forming only one hydrogen bond. All distances between H atoms exceed 2 Å.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL97*.

The authors thank Nanjing University and the University of Malaya for supporting this work.

References

Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Hay, R. W., Lawrence, G. A. & Curtis, N. F. (1975). J. Chem. Soc. Perkin Trans. I, pp. 591–593.

- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA. Riesen, A., Zehnder, M. & Kaden, T. A. (1986). *Helv. Chim. Acta*, **69**, 2067–
- 2073.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Wang, S.-F., Li, H.-Q., Ruan, B.-F., Zhu, H.-L. & Ng, S. W. (2005). Acta Cryst. E**61**, o2413–o2414.